
Dynamics of US Buffett Indicator ∗

Hiro Asano

December 1, 2024

Points of this study
1 TMC and GDP are both nonstationary, as they are known.
2 The Buffett indicator, more precisely lnS − β lnY , is cointegrated with β > 1.
3 The Buffett indicator could be mean reverting.

This study investigates the dynamic relationship of two markets: the goods market and the stock
market. It uses Gross Domestic Product (GDP), and total market capitalization (TMC) as size
measures for those markets. GDP represents the value of all goods and services domestically produced,
and TMC represents the aggregate market capitalization of all publicly traded firms. Both TMC and
GDP exhibit dynamics of long-term trends and short-term fluctuations.

The study assumes that a relationship between TMC and GDP should exist. Value added is sales
revenue less the costs of intermediate goods such as materials and energy. The profit is value added,
less labor costs and depreciation. These items are proportional to output to some extent. In particular,
value-added and profits are roughly proportional. Investors evaluate a firm based on its profit and
holding assets, and contemplate its stock price. Thus, a firm’s profit should reflect on its market
capitalization, which is the product of its stock price and the number of outstanding stocks.

GDP is the aggregate value-added of all firms operating in a country. Profits are a part of the value
added. If the discount rate and annual profits are constant over the years, a stock price theoretically
equals annual profits divided by the discount rate. In other words, the discount rate’s inverse is the
theoretical value of the price-earnings ratio (P/E ratio). TMC is the aggregate of all firms’ market
capitalizations. In this way, TMC and GDP are related to each other.

The study analyzes the dynamic relationship between TMC and GDP by time series econometrics.
TMC and GDP are both known as nonstationary or unit-root processes. When nonstationary time se-
ries data is regressed on another nonstationary time series, the regression can be spurious or nonsense.
On the other hand, when both are related, nonstationary time series data could be cointegrated, and
regression with them is possibly super-consistent. This study also investigates whether the indicator
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is the mean-reverting process or whether the Buffett indicator shows the regression to the mean. If
the indicator is the mean-reverting process, it tends to return to the long-run equilibrium level.

1 Data

1.1 Wilshire 5000 as Total Market Capitalization and Gross Domestic Product

This study analyses the US economy’s total market capitalization (TMC) and Gross Domestic
Product (GDP). The study employs the Wilshire 5000 index for TMC. The former measures the
US stock markets, while the latter measures the US economy. The mathematical symbols of both
data are, respectively, S and Y , and both are natural-logged. The upper panel of Figure 1 shows
both time-series data. TMC and GDP data have been increasing in the long term, while TMC has
fluctuated more vigorously than GDP in the short term. Also, it is shown that TMC has risen faster
than GDP.

1.2 Buffett Indicator (BI)

The Buffett indicator is defined as the ratio of TMC to GDP. 1）

BI ≡ S

Y
= exp(lnS − lnY ) (1)

Its value is supposed to equal unity. When the stock price index is either high or low, the Buffett
indicator is also high or low. The lower panel of Figure 1 shows the Buffett indicator. The indicator
has also increased, resulting from TMC rising faster than GDP. This study focuses on the relation
between lnS and lnY . The relation of the Buffett Indicator is lnS − lnY . However, to incorporate the
upward trend of the Buffett Indicator, the study modifies the indicator to lnS − β lnY with β > 1.

2 Nonstationary Time Series Econometrics

Both TMC and GDP are known to be nonstationary or to have unit roots. When one nonstationary
time series data is regressed on another nonstationary time series, the regression could be spurious,
i.e., it could show seemingly good results even though the data are irrelevant.

2.1 Nonstationarity

This section investigates nonstationarity of both data using the Box-Jenkins methodology and the
augmented Dickey-Fuller test as a unit-root test.

1） Buffett and Loomis, 2001
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Figure1: Total market capitalization, GDP, and Buffett Indicator

2.1.1 Box-Jenkins Methodology

The Box-Jenkins methodology is a four-step procedure.

Step 1 Transform data to become data stationary, often taking differences.
Step 2 Determine the order of an autoregressive moving-average (ARMA) model.
Step 3 Estimate the parameters of the ARMA process.
Step 4 Perform diagnostic analysis.

Table1 shows patterns of the autocorrelation function (acf) and the partial autocorrelation function
(pacf) for AR(p), MA(q), and ARMA processes. The upper panel of Figure2 shows the correlograms
of lnSt and lnYt. Both data show persisting acf, while their pacf’s are insignificant. They are likely
AR(1) processes, and possibly unit root processes. However, after both data are first-differenced,
their acf’s also become insignificant, as the lower panel of Figure2 shows.

2.1.2 Unit-root tests
Because both lnSt and lnYt seem nonstationary, this subsection conducts the augmented Dickey-

Fuller (ADF) test for stationarity. Table2 shows its results. The ADF test concludes that lnSt

and lnYt reject the null hypothesis of nonstationarity at the 5% significant level, while ∆lnSt and
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(a) Correlograms of lnSt (above) and lnYt (below)

acf

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

Lag

pacf

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

Lag

acf

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

Lag

pacf

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

Lag

(b) Correlograms of ∆lnSt (above) and ∆lnYt (below)

Figure2: Correlograms of lnSt and lnYt
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Table1: Correlation patterns of ARMA process

Process acf pacf

AR(p) Infinite: damping out Finite: cuts off after lag p

MA(q) Finite: cuts off after lag q Infinite: damping out
ARMA Infinite: damping out Infinite: damping out

Table2: Augmented Dickey-Fuller test

Variable Test statistic p value H0 T

lnSt -2.6939698 0.2848389 nonstationary 217
∆lnSt -6.2456496 < 0.01 nonstationary 216
lnYt 0.0305701 > 0.99 nonstationary 311

∆lnYt -5.9410323 < 0.01 nonstationary 310

∆lnYt fail to reject the hypothesis at the 5% significance level. In other words, lnSt and lnYt are
nonstationary or unit root processes, while ∆lnSt and ∆lnYt are stationary.

2.2 Linear Regressions and Cointegration Analyses

The research subject of this study is the Buffett indicator, i.e., lnSt − lnYt or, more specifically,
lnSt − β lnYt. This section conducts linear regression analyses.

2.2.1 Simple Linear Regression Model

First, the study investigates the simple linear regression model (SLRM), and its regression equation
is the following:

lnSt = αSLRM + βSLRM lnYt + ut (2)

As table3 shows, the results of the SLRM estimation seem good. Namely, the coefficient estimate
of βSLRM , is significant, and R2 is high and close to unity. However, the Durbin-Watson statistic is
less than R2, which is a good rule of thumb to suspect that the regression is spurious.

Table3: Simple linear regression model

Coefficient / test Estimate / test statistic p value H0

αSLRM -3.7336868 1.6807021E-49 = 0
βSLRM 1.3893131 3.8439479E-143 = 0

F 4249.5967084 3.8439479E-143 all coefficients equal zero
Durbin-Watson 0.0535566 1.4498556E-47 zero autocorrelation

T = 216; R2 = 0.9520566; R2 = 0.9518326
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2.2.2 Error-correction Model
This section employs the error correction model (ECM) to improve the SLRM regression. Its

regression equation is the following:

∆lnSt = αECM + βECM ∆lnYt + γs lnSt−1 + γy lnYt−1 + vt (3)

Table4 shows the results of the ECM regression. The estimates of the coefficients, βECM , γs, and
γy are siginificant, and R2 is less than the Durbin-Watson statistic. Also, the ratio −γy / γs (≈
1.6666) is close to the estimates of coefficients, βECM and βSLRM . By rewriting the ECM regression
equation, we have the following:

(∆lnSt − βECM ∆lnYt) = αECM + γs

[
lnSt−1 −

(
−γy

γs

)
lnYt−1

]
+ vt (4)

The study compares the equilibrium error term on the right-hand side and the transient error
term on the left-hand side by the delta method. The testing null hypothesis is βECM = −γy/γs, or
βECM + γy/γs = 0. Table5 shows its result. The hypothesis test by the delta method fails to reject
the hypothesis, or in other words, these terms are statistically equal.

Table4: Error correction model

Coefficient / test Estimate / test statistic p value H0

αECM -0.2542026 0.001588 = 0
βECM 1.5070731 8.5912221E-5 = 0

γs -0.0403735 0.011012 = 0
γy 0.0672852 0.0034539 = 0
F 6.8034087 2.1257972E-4 all coefficients equal zero

Durbin-Watson 1.5018376 6.9368337E-5 zero autocorrelation

T = 215; R2 = 0.0881993; R2 = 0.0752353

Table5: Comparison of equilibrium and transition terms

Relation Test statistic p value H0

βECM + γy/γs -0.1594959 0.663689 = 0
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2.2.3 Stationarity of Residuals

When the regression is spurious, its residuals are nonstationary. Therefore, the study investigates
the SLRM and the ECM residuals using the correlograms and the Engel-Granger ADF (EG-ADF)
test. Figure3 shows the correlograms of the SLRM and the ECM residuals. The acf of the SLRM
residuals, û, damps out gradually, while all three other functions cut off after the first lag. In other
words, residuals, û and v̂, are both stationary and, because the SLRM and the ECM regressions both
yield stationary residuals, lnSt and lnYt are cointegrated.

Table6 shows the results of the EG-ADF test. The EG-ADF test and the ADF test have similar
procedures but different criteria. Table7 shows the criteria of the EG-ADF test. Both v̂ and û

reject the null hypothesis of nonstationarity, although the ECM residuals, v̂, more strongly reject the
hypothesis than the SLRM residuals, û.
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Figure3: Correlograms of SLRM residuals (above) and ECM residuals (below)
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Table6: Engle-Granger augmented Dickey-Fuller tests

Residuals Statistic p value H0 T

û -3.6080775 (0.0336199) nonstationary 216
v̂ -6.4017524 (< 0.01) nonstationary 215

Remark: the p values require adjustments.

Table7: Critical values for EG-ADF statistics

Number of explanatory variables 10% 5% 1%

1 (for û) -3.12 -3.41 -3.96
3 (for v̂) -3.84 -4.16 -4.73

2.2.4 Johansen Test
The Johansen test is for cointegration analysis, which also employs the ECM. It has two tests: the

trace test and the maximum eigenvalue test. Table8 shows that both tests reject the null hypothesis
of zero cointegration vector but fail to reject one or more cointegration vectors. In other words, the
Johansen test concludes that lnSt and lnYt have one cointegrating vector.

Table8: Johansen tests

Test Test statistic 10% 5% 1% H0

Trace 5.2100697 6.5 8.18 11.65 ≥ 1
44.1625426 15.66 17.95 23.52 = 0

Maximum eigenvalue 5.2100697 6.5 8.18 11.65 ≥ 1
38.952473 12.91 14.9 19.19 = 0

3 Buffett Indicator as Mean-reverting Process

If βECM = γy/γs, we can rewrite equation (4) as a following mean-reverting process with κ ≡ −γs,
µ ≡ −αECM /γs, and lnBIt ≡ lnSt − βECM lnYt;

∆lnBIt = κ (µ − lnBIt−1) + vt (5)

The mean-reverting process is also called the Ornstein-Uhlenbeck process. Table9 shows the esti-
mates of the coefficients, κ and µ. The estimate for coefficient κ is positive and statistically significant,
so that, when lnBIt > µ, ∆lnBIt likely becomes negative. In other words, when lnBIt−1 is greater
than its mean , µ, lnBIt is likely to less than lnBIt−1, i.e., lnBIt is mean reverting.

If residuals, the ECM residuals, v̂t, or the SLRM residuals, ût, is normally distributed, vt or ut

could be a Wiener process. As Figure4 shows, the ECM residual, v̂t are skewed to the left, while the
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Table9: Mean-reverting Process

Coefficient Estimate p value H0

κ 0.0403735 0.011012 = 0
µ -6.2962747 2.0947327E-5 = 0

SLRM residuals, ût are skewed to the right. Here, the ECM residuals, v̂t, seem to have a normal
distribution with four outliers. As Table10 shows, the Shapiro-Wilk test for normality rejects the null
hypothesis for both v̂t and ût.
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Figure4: Histograms and QQ-plots of v̂ (above) and û (below)

Table10: Shapiro-Wilk tests for normality

Residuals Test statistic p value H0

v̂ 0.9391081 7.9818197E-8 normality
û 0.9548824 2.5682555E-6 normality

9



4 Future Reserch

Possible future research would be three-hold: incorporating super-consistent standard errors into
analysis, testing whether the Buffett indicator could be the Wiener process with the Poisson process,
and testing the hypothesis that the indicator is mean reverting, and if so, what the mean is.

When time series data are cointegrated, a regression with such data could be super-consistent.2）

The convergence speed of coefficient estimates is 1/T rather than 1/
√

T . Then, hypothesis tests
could yield different results. In particular, βECM ̸= −γy/γs, i.e., the equilibrium error term and the
transient error term are different, as opposed to this study.

The ECM residuals seem to have a normal distribution with four outliers. By dropping those
outliers, its distribution could be normal. In addition, The four outliers may follow the Poisson
process.

If βECM ̸= −γy/γs, then equation (4) can be rewritten as follows:

(∆lnSt − βECM ∆lnYt) = αECM + γs

[
lnSt−1 −

(
−γy

γs

)
lnYt−1

]
+ vt

= γs

[
α

γs
+

(
βECM + γy

γs

)
lnYt−1 + (lnSt−1 − βECM lnYt−1)

]
+ vt

Then,

∆lnBIt = κ

[
µ −

(
βECM + γy

γs

)
lnYt−1 − lnBIt−1

]
+ vt (6)

Therefore, lnBIt has its mean to revert, which reduces the bracket term of the right-hand side to
zero. The reverting mean can be written as follows:

lnBIt = µ −
(

βECM + γy

γs

)
lnYt (7)

Thus, the Buffett indicator tends to increase along with nominal GDP.
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