
Dynamics of US Buffett Indicator ∗

Hiro Asano

2025-04-28

Points of this study
1 The W5K and GDP are both nonstationary as they are known, but cointegrated.
2 The Buffett indicator is a mean-reverting Gaussian process with a Poisson jump process.
3 The reversion mean of the Buffett indicator is increasing along with GDP, as is often pointed out.
4 However, the increasing rate of the W5K equals the GDP growth rate, as the Buffett indicator implies.
5 This study detects four outliers in the W5K, which coincided with four negative shocks to the US economy.
6 The ECM of the Buffett indicator is variance stationary as opposed to the EMH.

This study investigates the dynamic relationship between the U.S. economy’s goods and stock markets. It
uses the market capitalization of the Wilshire 5000 index (W5K) and Gross Domestic Product (GDP) as size
measures for those markets. The W5K represents the aggregate market capitalization of all publicly traded
firms, and GDP represents the value of all goods and services domestically produced. The W5K and GDP both
exhibit dynamics of long-term trends and short-term fluctuations.
The study assumes an underlying relationship between the W5K and GDP. Value added is defined as sales

revenue less the costs of intermediate goods such as materials and energy. The profit equals value added less
labor costs and less depreciation. These items are proportional to the output to some extent. In particular,
value-added and profits are roughly proportional. At the same time, investors evaluate a firm based on its
profit and holding assets, and contemplate its stock price. Thus, a firm’s profit should reflect on its market
capitalization, which is the product of its stock price and the number of its outstanding shares.
Profits are a part of value added. If the discount rate and annual profits are constant over the years, a stock

price theoretically equals yearly profits divided by the discount rate. In other words, the discount rate’s inverse
is the theoretical value of the price-earnings ratio (P/E ratio). The W5K is the aggregate of all firms’ market
capitalization, while GDP is the aggregate value-added of all firms operating in a country. In this way, the
W5K and GDP are related to each other.
The efficient-market hypothesis 　 (EMH)*1　 implies the random-walk hypothesis that the stock price is a

random-walk process.*2 After a large number of steps, a random walk converges toward a Wiener process.*3 As
a result, the return on stocks should follow a normal distribution, i.e., Gaussian noise. Also, the EMH implies
that the current return on stocks is independent of the past returns on stocks. In addition, if the return on
stocks behaves consistently over time, the return on stocks follows an independent and identically distributed

∗ This is a preliminary and incomplete draft. The author is still working on many issues, and suggestions are welcome. (Email:
asanohiro559@gmail.com)
© 2025 Hirokatsu Asano（浅野博勝）

*1 Wikipedia, The Free Encyclopedia, s.v. ”Efficient-market hypothesis,” (accessed February 5, 2025),
https://en.wikipedia.org/wiki/Efficient-market_hypothesis

*2 Wikipedia, The Free Encyclopedia, s.v. ”Random walk,” (accessed March 12, 2025),
https://en.wikipedia.org/wiki/Random_walk

*3 Wikipedia, The Free Encyclopedia, s.v. ”Wiener process,” (accessed March 12, 2025),
https://en.wikipedia.org/wiki/Wiener_process
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(i.i.d.) normal distribution, and is white Gaussian noise.*4

A stock price is often said to exhibit regression toward the mean,*5 or to be a mean-reverting process, also
known as the Urnstein-Uhlenbeck process.*6 If it is the case, it contradicts the EMH. The EMH implies that
the return on stocks is the Wiener process whose drift term is constant, while the drift term is dependent on
the current value of the process for the mean-reverting process.
The study analyzes the dynamic relationship between the W5K and GDP by time series econometrics. The

W5K and GDP are both known as nonstationary or unit-root processes.*7 When nonstationary time series
data is regressed on another nonstationary time series, the regression can be spurious or nonsensical. On the
other hand, when both are related, nonstationary time series data could be cointegrated*8 and regression with
cointegrated data is possibly superconsistent.*9

The study employs ordinary least squares (OLS) estimations of the error correction model (ECM).*10 It
examines whether the W5K and GDP are cointegrated, and whether OLS residuals are white Gaussian noise.
It concludes that they are cointegrated, and, after removing outliers from the dataset, the ECM residuals are
Gaussian but not white. Here, the Buffett indicator plays a key role. *11*12 The study also investigates whether
the Buffett indicator is a mean-reverting process or whether the indicator shows the regression toward the mean.
If the indicator is the mean-reverting process, it tends to return to the long-run equilibrium level. Finally, given
GDP, the study simulates both the Buffett indicator and the W5K.

1 Data
This study analyses the US market capitalization and Gross Domestic Product (GDP). The former employs

the market capitalization of the Wilshire 5000 index (W5K), which measures the US stock markets, while the
latter measures the US economy. The W5K is the aggregate of the market capitalization of all publicly traded
US firms. The index was first published on December 31, 1970. The data is published daily, and the study
examines the index’s quarterly mean. GDP is the aggregate of value added produced domestically. The US
government started publishing the US GDP data in the first quarter of 1947. The US GDP data is published
quarterly.*13

1.1 Data in absolute form

The upper panel of Figure 1 shows the time-series plot of the W5K and GDP. Both the W5K and GDP show
long-term trends as well as short-term fluctuations. They have been increasing in the long term, while the W5K
has fluctuated more vigorously than GDP in the short term. Also, the panel shows that the W5K has risen

*4 Wikipedia, The Free Encyclopedia, s.v. ”White noise,” (accessed February 5, 2025),
https://en.wikipedia.org/wiki/White_noise

*5 Wikipedia, The Free Encyclopedia, s.v. ”Regression toward the mean,” (accessed March 12, 2025),
https://en.wikipedia.org/wiki/Regression_toward_the_mean

*6 Wikipedia, The Free Encyclopedia, s.v. ”Ornstein –Uhlenbeck process,” (accessed March 12, 2025),
https://en.wikipedia.org/wiki/Ornstein-Uhlenbeck_process

*7 Wikipedia, The Free Encyclopedia, s.v. ”Unit root,” (accessed March 12, 2025),
https://en.wikipedia.org/wiki/Unit_root

*8 Wikipedia, The Free Encyclopedia, s.v. ”Cointegration,” (accessed January 5, 2025),
https://en.wikipedia.org/wiki/Cointegration

*9 Stock, 1987
*10 Wikipedia, The Free Encyclopedia, s.v. ”Error correction model,” (accessed January 5, 2025),

https://en.wikipedia.org/wiki/Error_correction_model
*11 Buffett and Loomis, 2001
*12 Wikipedia, The Free Encyclopedia, s.v. ”Buffett indicator,” (accessed January 5, 2025),

https://en.wikipedia.org/wiki/Buffett_indicator
*13 U.S. Bereau of Economic Analysis, Gross Domestic Product [GDP], retrieved from FRED, Federal Reserve Bank of St. Louis;

(accessed March 31, 2025), https://fred.stlouisfed.org/series/GDP
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図 1 Time-series plots of W5K, GDP, and Buffett indicator

faster than GDP. The lower panel of Figure 1 shows the time-series plot of the Buffett indicator. The indicator
has also fluctuated in the short term and increased in the long term. Its upward trend results from the W5K
rising faster than GDP. Its value was about unity around the year 2000.
In the study, the mathematical symbols of the W5K and GDP are, respectively, S and Y , which are natural-

logged. The Buffett indicator (BI) is defined as the ratio of the W5K to GDP.

BIt ≡
St

Yt
or lnBIt ≡ lnSt − lnYt (1)

where subscript t is a time index. Its value is supposed to equal unity. When the stock price index is either
high or low, the Buffett indicator is also high or low. The study investigates the relation between lnSt and lnYt.
The relation of the Buffett indicator is lnSt − lnYt. However, to incorporate the upward trend of the Buffett
indicator, the study modifies the indicator to lnSt − ψ · lnYt with ψ ≈ 1.
The W5K and GDP are known to be nonstationary or to have unit roots. When one nonstationary series is

regressed on another nonstationary time series, the regression could be spurious, i.e., it could show seemingly
good results even though the data are irrelevant. The study follows the Box-Jenkins methodology and investi-
gates the nonstationarity of both datasets by using the augmented Dickey-Fuller (ADF) test for nonstationarity.
The Box-Jenkins methodology is a four-step procedure.

Step 1 Transform data to make time-series data stationary, often taking differences.
Step 2 Determine the order of an autoregressive moving-average (ARMA) model.
Step 3 Estimate the parameters of the ARMA process.
Step 4 Perform diagnostic analysis.
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表 1 Correlation patterns of ARMA process

Process ACF PACF
AR(p) Infinite: damping out Finite: cuts off after lag p
MA(q) Finite: cuts off after lag q Infinite: damping out
ARMA Infinite: damping out Infinite: damping out

表 2 ADF test of W5K and GDP

Variable Test statistic p value H0 T

lnSt -2.689718 0.2866228 nonstationarity 217
lnYt -2.9818798 0.164046 nonstationarity 217
lnBIt -3.4836235 0.0453607 nonstationarity 217

Table 1 shows patterns of the autocorrelation function (ACF) and the partial autocorrelation function (PACF)
for AR(p), MA(q), and ARMA processes. Figure 2 shows the time-series plots and the correlograms of the W5K,
GDP, and the Buffett indicator after 1971. Its first row shows the time-series plot of lnSt. Its second row shows
the correlogram of lnSt, which shows the persisting ACF, but the PACF is insignificant after the first lag.
Therefore, the W5K should be an AR(1) process, and likely a unit root process. Its third row shows the time-
series plot of lnYt and its fourth row shows the correlogram of lnYt. GDP’s correlogram shows the persisting
ACF, while the PACF is insignificant after the first lag. Similarly to the W5K, GDP should also be an AR(1)
process, and likely a unit root process. Its fifth row shows the time-series plot of lnBIt and its sixth row shows
the correlogram of lnBIt. The Buffett indicator’s correlogram shows the persisting ACF, while the PACF is
insignificant after the first lag. Like the W5K and GDP, the Buffett indicator should also be an AR(1) process,
and possibly a unit root process.
Table 2 shows the results from the ADF tests of the data. Both the W5K and GDP fail to reject the

null hypothesis of nonstationarity. However, the Buffett indicator shows a somewhat ambiguous result. The
indicator’s p value for the ADF test is 4.5360678%.

1.2 Data in first-differenced form

However, after all time-series data are first-differenced, their ACFs become insignificant, similar to their
PACFs. The EMH implies that a stock price is a random walk. Then, first-differencing a stock price index such
as the W5K supposedly yields white Gaussian noise, or ∆lnSt should be white Gaussian noise. The white noise
means that noise follows an i.i.d. distribution, and the Gaussian noise means that noise is normally distributed.
The study employs the Ljung-Box test for independence and the Shapiro-Wilk test for normality. The Ljung-
Box test is actually a test whose null hypothesis is no autocorrelation. No autocorrelation is the necessary, but
not the sufficient, condition for independence. The study applies these hypothesis tests not only to ∆lnSt but
also to ∆lnYt and ∆lnBIt.
The upper panel of Figure 3 is the time-series plot of the first-differenced W5K, ∆lnSt. Here, ∆lnSt ap-

proximates the retrun on the W5K. The points would not show a long-term trend, or could be constant over
time. There are possibly four downward outliers and one upward outlier. The second row of Figure 3 is the
correlogram of ∆lnSt. The first lags of the ACF and the PACF are significant, but other values are insignificant.
The left panel of the third row is the histogram of ∆lnSt, which seems normal. The right panel of the third row
is the QQ plot of ∆lnSt. Most scores follow closely the normal-distribution line. However, there are possibly
five outliers: four at the lower end, and one at the upper end.
Table 3 shows the descriptive statistics and the hypothesis tests of the first-differenced W5K, ∆lnSt. The
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図 2 Time-series plots and correlograms of W5K, GDP, and Buffett indicator
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図 3 Time-series plot, correlogram, histogram, and QQ plot of first-differenced W5K

表 3 Descriptive statistics and hypothesis tests of first-diffenced W5K

Mean Variance Skewness Kurtosis
0.0196816 0.0043398 -1.2339941 7.5777916

Test Test statistic p value H0

ADF test -6.2204023 < 0.01 nonstationarity
Ljung-Box test 42.2778614 (df = 24) 0.0120103 no autocorrelation

Shapiro-Wilk test 0.9329822 2.2113822× 10−8 normality

(T = 216)

skewness is negative, i.e., a longer tail on the left side, and the kurtosis exceeds three, i.e., leptokurtic. The
ADF test rejects the null hypothesis of nonstationarity. In other words, the first-differenced W5K is stationary.
The Ljung-Box test fails to reject the null hypothesis of no autocorrelation at the 1% confidence level. The
Shapiro-Wilk test rejects the null hypothesis of normality due to negatively-skewed and leptokurtic distribution.
Thus, the first-differenced W5K could be white but not Gaussian.
The upper panel of Figure 4 is the time-series plot of first-differenced GDP, ∆lnYt. The range of ∆lnYt

is narrower than that of ∆lnSt. First-differenced GDP would have a slightly downward trend, and its range
becomes somewhat narrower over time. There are two outliers, one downward and another upward, in 2020.
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図 4 Time-series plot, correlogram, histogram, and QQ plot of first-differenced GDP

They are due to the coronavirus pandemic. The second row of Figure 4 is the correlogram of ∆lnYt. The ACF
is insignificant but persistent. The PACF is insignificant and damped out. The left panel of the third row is the
histogram of ∆lnYt. The right panel of the third row is the QQ plot of ∆lnYt, and many scores follow closely
the normal-distribution line. However, some scores at the lower end are far below the line, while some at the
upper end are far above the line.
Table 4 shows the descriptive statistics and the hypothesis tests of first-differenced GDP, ∆lnYt. Similarly

to ∆lnSt, the skewness is negative, and the kurtosis exceeds three. The ADF test rejects the null hypothesis
of nonstationarity. In other words, first-differenced GDP is stationary. The Ljung-Box test rejects the null
hypothesis of no autocorrelation. The Shapiro-Wilk test also rejects the null hypothesis of normality due
to a negatively skewed and leptokurtic distribution. Thus, first-differenced GDP could be neither white nor
Gaussian.
The upper panel of Figure 5 is the time-series plot of the first-differenced Buffett indicator, ∆lnBIt. The

first-differenced Buffett indicator would not have any long-term trend, or could be constant over time. There
are possibly four downward outliers and one upward outlier. The second row of Figure 5 is the correlogram
of ∆lnBIt. The ACF is persistently significant and gradually damping out. The PACF of the first lag is
statistically significant, but other lags are insignificant. In other words, the first-differenced Buffett indicator
should be an AR(1) process, or the Buffett indicator should be an ARIMA(1, 1, 0) process. The left panel of
the third row is the histogram of ∆lnBIt, which seems normal. The right panel of the third row is the QQ plot
of ∆lnBIt. Most scores follow closely the normal-distribution line. However, there are possibly five outliers:
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表 4 Descriptive statistics and hypothesis tests of first-diffenced GDP

Mean Variance Skewness Kurtosis
0.0153104 1.5903612× 10−4 -1.4228093 25.4724515

Test Test statistic p value H0

ADF test -4.97457 < 0.01 nonstationarity
Ljung-Box test 128.8635789 (df = 24) 2.220446× 10−16 no autocorrelation

Shapiro-Wilk test 0.7745882 6.4347371× 10−17 normality

(T = 216)

図 5 Time-series plot, correlogram, histogram, and QQ plot of first-differenced Buffett indicator

four at the lower end, and one at the upper end.
Table 5 shows the descriptive statistics and the hypothesis tests of the first-differenced Buffett indicator,

∆lnBIt. Similarly to ∆lnSt and ∆lnYt, the skewness is negative, and the kurtosis exceeds three. The ADF
test rejects the null hypothesis of nonstationarity. In other words, the first-differenced Buffett indicator is
stationary. The Ljung-Box test fails to reject the null hypothesis of no-autocorrelation at the 1% confidence
level. The Shapiro-Wilk test rejects the null hypothesis of normality due to a negatively skewed and leptokurtic
distribution. Thus, the first-differenced Buffett indicator could be white but not Gaussian.
The examined data, the Wilshire 5000 index (lnSt), GDP (lnYt), and the Buffett indicator (lnBIt), are all
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表 5 Descriptive statistics and hypothesis tests of first-diffenced Buffett indicator

(c) ∆lnBIt
Mean Variance Skewness Kurtosis

0.0043711 0.0041579 -1.1512243 6.9527955

Test Test statistic p value H0

ADF test -6.1531625 < 0.01 nonstationarity
Ljung-Box test 40.1335316 (df = 24) 0.0206913 no autocorrelation

Shapiro-Wilk test 0.936475 4.4110745× 10−8 normality

(T = 216)

nonstationary time-series data. However, after first differencing, they become stationary. The histograms of
the first-differenced data are negatively skewed and leptokurtic. Therefore, their distributions are not normal.
Examining the first-differenced data suggests that there would be several outliers.

2 Ordinary Least Squares Analyses
This section conducts OLS estimations of three econometric models. Two models are simple linear regression

models (SLRMs), and another is a multiple linear regression model, specifically the Error Correction Model
(ECM). The first SLRM employs the data of lnSt and lnYt in their absolute forms, while the second LSRM
employs the same data in their first-differenced form. Equations (2) and (3) are the econometric models of
these two models. Equation(4) is the econometric model of the ECM for lnSt and lnYt, which employs both
the absolute and the first-differenced forms of the data.

lnSt = α+ β · lnYt + ut (2)
∆lnSt = γ + η ·∆lnYt + vt (3)
∆lnSt = φ+ ψ ·∆lnYt + ξ · lnSt−1 + ζ · lnYt−1 + wt (4)

This section first conducts OLS estimations with all the data. They find that four residuals are outliers, so
the study then conducts another OLS estimation with the data after removing outliers.

2.1 OLS analyses with all data

Table 6 shows coefficient estimates and hypothesis tests. Panel (a) of the Table is for SLRM with data in the
absolute form. The estimated coefficient β̂ is 1.392, and rejects the null hypothesis, β = 1. This is compatible
with the fact that the W5K has been increasing faster than GDP. The Durbin-Watson (DW) test rejects the
null hypothesis of no autocorrelation. In addition, the DW test statistic is less than R2, from which the rule of
thumb suggests that the regression could be spurious.
Panel (b) of Table 6 is for SLRM with data in the first-differenced form. The estimated coefficient, η̂, is 1.072,

and fails to reject the null hypothesis, η = 1. This is compatible with the Buffett indicator, which implies that
the increasing rate of the W5K equals the GDP growth rate. The Durbin-Watson (DW) test rejects the null
hypothesis of no autocorrelation. Similarly to the absolute form, the DW test statistic is less than R2, from
which the rule of thumb suggests spurious regression.
Panel (c) of Table 6 is for the ECM with data in the absolute and the first-differenced forms. The estimated

coefficient, ψ̂, is 1.511, and fails to reject the null hypothesis, ψ = 1. This is compatible with the Buffet indicator,
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表 6 Estimates and hypothesis tests of equation (2), (3), and (4)

(a) Estimates and hypothesis tests of SLRM equation (2)
Coefficient / test Estimate / test statisitc se p value Ho

α -1.0489045 0.0468625 4.4377642× 10−58 = 0

β 1.3924485 0.0212432 4.3972163× 10−144 = 0

F test 4296.5166219 N/A 4.3972163× 10−144 all coefficients equal zero
DW test 0.0532379 N/A 8.706969× 10−48 no autocorrelation

T = 217; R2 = 0.9523442; R2 = 0.9521225; SSR = 16.8651964

(b) Estimates and hypothesis tests of SLRM equation (3)
Coefficient / test Estimate / test statisitc se p value Ho

γ 0.0032698 0.0069259 0.6373299 = 0

η 1.0719352 0.3494945 0.0024403 = 0

F test 9.4071148 N/A 0.0024403 all coefficients equal zero
DW test 1.4616263 N/A 3.2997536× 10−5 no autocorrelation

T = 216; R2 = 0.0421075; R2 = 0.0376314; SSR = 0.8937759

(c) Estimates and hypothesis tests of ECM equation (4)
Coefficient / test Estimate / test statisitc se p value Ho

φ -0.0679085 0.0229581 0.0034486 = 0

ψ 1.5114221 0.3759803 8.0895835× 10−5 = 0

ξ -0.0393076 0.0156768 0.0129132 = 0

ζ 0.066251 0.0227001 0.0038963 = 0

F test 6.7904897 N/A 2.1579838× 10−4 all coefficients equal zero
DW test 1.4995011 N/A 6.2576215× 10−5 no autocorrelation

T = 216; R2 = 0.0876677; R2 = 0.0747573; SSR = 0.8512653

Relation Estimate se p value Ho

ζ̂/ξ̂ -1.6854492 0.1730906 2.088677× 10−22 = 0

although its standard error is large. The ratio of estimates, ζ̂ / ξ̂ is -1.686, whose absolute value is close to ψ̂.
In other words, the long-term equilibrium level, ψ̂, and the short-term transition, | ζ̂ / ξ̂ |, are approximately
equal, or the Buffett indicator is valid for both the long-term and the short-term relation between lnSt and
lnYt. The Durbin-Watson (DW) test rejects the null hypothesis of no autocorrelation. Similarly to the SLRM
estimations, the DW test statistic is less than R2, from which the rule of thumb suggests spurious regression.
Figure 6 shows the time-series plot, the correlogram, the histogram, and the QQ plot of SLRM residuals from

the absolute-form regression, ût. The time-series plot shows that the residuals ût are autocorrelated, and the
correlogram agrees. The correlogram suggests that the residuals ût are an AR(1) process. Its histogram and
QQ plot suggest that its distribution is not normal. Table 7 is the descriptive statistics and hypothesis tests for
the residuals ût. The p value of the Engel-Grange ADF test is between the critical values of 1% and 5%. The
Engel-Grange test for cointegration employs the ADF test of regression residuals, but its critical values require
adjustments due to estimated coefficients. The Ljung-Box test rejects the null hypothesis of no autocorrelation,
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図 6 Time-series plot, correlogram, histogram, and QQ plot of SLRM residuals ût

which is compatible with its correlogram. The Shapiro-Wilk test rejects the null hypothesis of normality due
to a positively skewed distribution.
Figure 7 shows the time-series plot, the correlogram, the histogram, and the QQ plot of SLRM residuals

from the first-differenced-form regression, v̂t. The time-series plot shows that the residuals v̂t seem randomly
scattered around zero, and the correlogram agrees. The correlogram suggests that the residuals v̂t is neither
an AR(p) process, nor a MA(q) process. The histogram and QQ plot suggest five possible outliers: four at the
lower end and one at the upper end. Table 8 is the descriptive statistics and hypothesis tests for the residuals
v̂t. The Engel-Grange ADF test rejects the null hypothesis of nonstationarity. The Ljung-Box test fails to
reject the null hypothesis of no autocorrelation at the 1% confidence level. The Shapiro-Wilk test rejects the
normality hypothesis due to a negatively skewed and leptokurtic distribution.
Figure 8 shows the time-series plot, the correlogram, the histogram, and the QQ plot of the ECM residuals,

ŵt. The time-series plot shows that the residuals ŵt seem randomly scattered around zero, and the correlogram
agrees. The correlogram suggests that the residuals ŵt is neither an AR(p) process, nor a MA(q) process.
Similarly to v̂t, its histogram and QQ plot suggest that there are five possible outliers: four at the lower end
and one at the upper end. Table 9 is the descriptive statistics and hypothesis tests for the residuals ŵt. Similarly
to v̂t, the Engel-Granger ADF test rejects the null hypothesis of nonstationarity. The Ljung-Box test rejects
the null hypothesis of no autocorrelation. The Shapiro-Wilk test also rejects the normality hypothesis due to a
negatively skewed and leptokurtic distribution.
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表 7 Descriptive statistics and hypothesis tests of SLRM residuals ût

Mean Variance Skewness Kurtosis
8.6896056× 10−18 0.0780796 0.7508147 3.2697693

Test Test statistic p value H0

Engel-Granger ADF test -3.5632537 0.01 ∼ 0.05 nonstationarity
Ljung-Box test 1314.0820908 (df = 23) 0 no autocorrelation

Shapiro-Wilk test 0.9544044 2.175589× 10−6 normality

(T = 217)

Critical values for Engel-Granger ADF statistics
Number of regressors 0.10 0.05 0.01

1 (for ût) -3.12 -3.41 -3.96

図 7 Time-series plot, correlogram, histogram, and QQ plot of SLRM residuals v̂t
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表 8 Descriptive statistics and hypothesis tests of SLRM residuals v̂t

Mean Variance Skewness Kurtosis
−2.6667107× 10−18 0.0041571 -1.1406262 6.892945

Test Test statistic p value H0

Engel-Granger ADF test -6.1460832 < 0.01 nonstationarity
Ljung-Box test 39.8431751 (df = 23) 0.0160028 no autocorrelation

Shapiro-Wilk test 0.9369766 4.8799484× 10−8 normality

(T = 216)

Critical values for Engel-Granger ADF statistics
Number of regressors 0.10 0.05 0.01

1 (for v̂t) -3.12 -3.41 -3.96

図 8 Time-series plot, correlogram, histogram, and QQ plot of ECM residuals ŵt
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表 9 Descriptive statistics and hypothesis tests of ECM residuals ŵt

Mean Variance Skewness Kurtosis
4.7447649× 10−18 0.0039594 -1.0972483 7.071372

Test Test statistic p value H0

Engel-Granger ADF test -6.3776455 < 0.01 nonstationarity
Ljung-Box test 43.3003337 (df = 21) 0.0028774 no autocorrelation

Shapiro-Wilk test 0.9390692 7.4762259× 10−8 normality

(T = 216)

Critical values for Engel-Granger ADF statistics
Number of regressors 0.10 0.05 0.01

3 (for ŵt) -3.84 -4.16 -4.73

2.2 Outliers and OLS analyses without outliers

This study finds several possible outliers. Four exceed the three-sigma confidence interval, and all are negative.
To accommodate the four outliers, the study splits the disturbance term of the ECM, wt, into two elements,
ordinary noise, w∗

t , and the outliers. The study regards the outliers as stochastic jumps. The studies further
regards each jump as the product of a negative constant, η (< 0), and the Poisson process of with a rate λ, i.e.,
η · qt where qt ∼ Po(λ). Thus, wt = w∗

t + η · qt. The estimates of η and λ are respectively (η̂ =) -0.24736 and
(λ̂ =) 0.0184332, assuming η⊥⊥ qt.
Then, the study again estimates regression equations (2), (3), and (4) without the outliers, and superscript(*)

indicates estimates and residuals from estimations without outliers. The study further examines whether the
residuals are white Gaussian noise. When the Shapiro-Wilk test fails to reject the null hypothesis of normality,
the study examines whether their mean and variance remain constant over the examined period by resorting to
the t and the F tests for the equality of mean and variance. This is a test of whether the residuals are identically
distributed. The study employs the Ljung-Box test to investigate whether the residuals are autocorrelated. This
is a test of whether the residuals are independent.

2.2.1 Outliers and economic events
Table 10 shows the list of the four outliers. These outliers coincided with negative economic events. The

first outlier occurred in the third quarter of 1974. In September 1973, Egypt waged a surprise attack on Israel.
Israel, backed by the US, struck back. It is the 1973 Arab-Israeli Conflict. At the annual conference of the
Organization of Petroleum Exporting Countries (OPEC) in October 1973, its Arab member countries declared
an oil embargo against countries supporting Israel.*14 In the following events, OPEC unilaterally raised the oil
price. Although the embargo period was short, the high oil price persisted. The world economy plunged into a
recession with high inflation, i.e., stagflation.
The second outlier happened in the fourth quarter of 1987. On Monday, October 19, 1987, the world stock

markets crashed.*15 Asian markets, except Japan, initiated the crash, and the crash spread westward. The Dow

*14 Wikipedia, The Free Encyclopedia, s.v. ”1973 oil crisis,” (accessed January 6, 2025),
https://en.wikipedia.org/wiki/1973_oil_crisis

*15 Wikipedia, The Free Encyclopedia, s.v. ”Black Monday (1987),” (accessed February 5, 2025),
https://en.wikipedia.org/wiki/Balck_Mondat_(1987)
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表 10 Four outliers

Year Quarter lnSt lnYt ŵt Economic event
1974 3 -0.484049 0.4447025 -0.2175046 1973 oil crisis
1987 4 0.9105538 1.6110354 -0.2644583 Black Monday
2002 3 2.1363207 2.3964433 -0.1909299 Dot-com crash
2008 4 2.2075261 2.6815836 -0.3165473 Lehman shock

Jones Industrial Average, for example, dropped by 508 points, or 22.6% in a single day, and it is the largest
one-day drop in the index’s history.
The third outlier was in the third quarter of 2002. In the second half of the 1990s, stock prices rose greatly,

resulting in an economic bubble, i.e., the Dot-com bubble. One of the main factors was the widespread adoption
of the multitasking MS Windows OS and the Internet. The stock price peaked in March 2000, and many
communication service and online shopping firms have gone bankrupt.*16 The quarter mean of the W5K in the
third quarter of 1997 was $8.88 trillion, while its quarterly mean was $13.83 trillion at the peak of the Dot-com
bubble in the third quarter of 2000. Its quarterly mean in the fourth quarter of 2002 was $8.37 trillion.
The fourth and last outlier occurred in the fourth quarter of 2008. On September 15, 2008, Lehman Brothers,

one of the biggest investment banks in the world, went bankrupt, triggering the worldwide crash.*17 The sub-
prime mortgage crisis started in 2007, and its negative consequences irreparably undermined Lehman Brothers.
Lehman Brothers was one of the first Wall Street firms to enter the mortgage business. The firm’s high exposure
to subprime-mortgage business resulted in its bankruptcy.

2.2.2 OLS analyses without outliers
This study finds four outliers in its dataset. Hereafter, the study conducts OLS estimations with data from

which the outliers are removed. Table 11 shows the OLS estimates of econometric models (2), (3), and (4). The
estimated coefficients of the SLRM equation (2) are similar to Table 6. The DW test statistic is far less than
R2, so the regression could be spurious. For the SLRM equation (3), the estimated coefficient η̂ is 0.700 down
from 1.072 in Table 6. The DW test statistic is greater than R2, so the regression could not be spurious. For
the ECM equation (4), the estimated coefficient ψ̂ is 1.037, which is approximately equal to unity. The t test
fails to reject the null hypothesis, ψ = 1. This is compatible with the Buffett indicator. The DW test statistic
is greater than R2, so the regression could not be spurious.
Figure 9 shows the time-series plot, the correlogram, the histogram, and the QQ plot of SLRM residuals from

the absolute-form regression, û∗t . The time-series plot shows that the residuals û∗t are autocorrelated, and the
correlogram agrees. The correlogram suggests that the residuals ût are an AR(1) process. Its histogram and
QQ plot suggest that its distribution is not normal. Table 12 is the descriptive statistics and hypothesis tests
for the residuals û∗t . The Ljung-Box test rejects the null hypothesis of no autocorrelation, which is compatible
with its correlogram. The Shapiro-Wilk test rejects the normality hypothesis.
Figure 10 shows the time-series plot, the correlogram, the histogram, and the QQ plot of SLRM residuals

from the first-differenced-form regression, v̂∗t . The time-series plot shows that the residuals v̂∗t seem randomly
scattered around zero, and the correlogram agrees. The correlogram suggests that the residuals û∗t is neither
an AR(p) process, nor a MA(q) process. The histogram and QQ plot suggest no outliers; all scores lie along
the normal-distribution line. Table 13 is the descriptive statistics and hypothesis tests for the residuals v̂∗t .

*16 Wikipedia, The Free Encyclopedia, s.v. ”Dot-com bubble,” (accessed January 6, 2025),
https://en.wikipedia.org/wiki/Dot-com_bubble

*17 Wikipedia, The Free Encyclopedia, s.v. ”Bankruptcy of Lehman Brothers,” (accessed January 6, 2025),
https://en.wikipedia.org/wiki/Bankruptcy_of_Lehman_Brothers
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表 11 Estimates and hypothesis tests of equations (2), (3), and (4) without outliers

(a) Estimates and hypothesis tests of SLRM equation (2) without outliers
Coefficient / test Estimate / test statisitc se p value Ho

α∗ -1.0463842 0.0473523 8.2271295× 10−57 = 0

β∗ 1.393449 0.0214267 1.4426862× 10−141 = 0

F test 4229.3370722 N/A 1.4426862× 10−141 all coefficients equal zero
DW test 0.0594985 N/A 1.1305235× 10−46 no autocorrelation

T = 213; R2 = 0.9524811; R2 = 0.9522559

(b) Estimates and hypothesis tests of SLRM equation (3) without outliers
Coefficient / test Estimate / test statisitc se p value Ho

γ∗ 0.0146927 0.0060362 0.0157809 = 0

η∗ 0.700323 0.3033399 0.0219517 = 0

F test 5.3301289 N/A 0.0219517 all coefficients equal zero
DW test 1.609438 N/A 0.0022459 no autocorrelation

T = 208; R2 = 0.0252218; R2 = 0.0204899

(c) Estimates and hypothesis tests of ECM equation (4) without outliers
Coefficient / test Estimate / test statisitc se p value Ho

φ∗ -0.0505622 0.0193246 0.0095491 = 0

ψ∗ 1.0372751 0.3220558 0.0014878 = 0

ξ∗ -0.0413525 0.0131816 0.0019583 = 0

ζ∗ 0.0658714 0.0190967 6.8267414× 10−4 = 0

F test 6.1295061 N/A 5.1954884× 10−4 all coefficients equal zero
DW test 1.6298862 N/A 0.002392 no autocorrelation

T = 208; R2 = 0.0826865; R2 = 0.0691966

Relation Estimate se p value Ho

ζ̂∗/ξ̂∗ -1.5929226 0.1221724 7.407342× 10−39 = 0

−φ̂∗/ξ̂∗ -1.2227102 0.2995513 4.4687186× 10−5 = 0

−(ψ̂∗ + ζ̂∗/ξ̂∗) 0.5556475 0.3124617 0.0753563 = 0

表 12 Descriptive statistics and hypothesis tests of SLRM residuals û∗
t

Mean Variance Skewness Kurtosis
−5.7045577× 10−17 0.0779531 0.7538038 3.2647381

Test Test statistic p value H0

Engel-Granger ADF test N/A due to omission of outliers nonstationarity
Ljung-Box test 1336.87498 (df = 23) 0 no autocorrelation

Shapiro-Wilk test 0.9536869 2.2365047× 10−6 normality

(T = 213)
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図 9 Time-series plot, correlogram, histogram, and QQ plot of SLRM residuals û∗
t

表 13 Descriptive statistics and hypothesis tests of SLRM residuals v̂∗t

(b) SLRM residuals without outliers (v̂∗t )
Mean Variance Skewness Kurtosis

2.2333001× 10−18 0.0029185 -0.0851944 3.0398462

Test Test statistic p value H0

Engel-Granger ADF test N/A due to omission of outliers nonstationarity
Ljung-Box test 46.8273791 (df = 23) 0.0023567 no autocorrelation

Shapiro-Wilk test 0.9949904 0.7232631 normality

(T = 208)

The Ljung-Box test rejects the null hypothesis of no autocorrelation. The Shapiro-Wilk test fails to reject the
normality hypothesis.
Figure 11 shows the time-series plot, the correlogram, the histogram, and the QQ plot of the ECM residuals,

ŵ∗
t . The time-series plot shows that the residuals ŵ∗

t seem randomly scattered around zero, and the correlogram
agrees. The correlogram suggests that the residuals ŵ∗

t is neither an AR(p) process, nor a MA(q) process.
Similarly to the residuals v̂∗t , its histogram and QQ plot suggest that there is no outlier, and all scores lie along
the normal-distribution line. Table 14 is the descriptive statistics and hypothesis tests for the residuals ŵ∗

t .
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図 10 Time-series plot, correlogram, histogram, and QQ plot of SLRM residuals v̂∗t

表 14 Descriptive statistics and hypothesis tests of ECM residuals ŵ∗
t

Mean Variance Skewness Kurtosis
−1.1567864× 10−18 0.0027465 -0.0185119 2.9655779

Test Test statistic p value H0

Engel-Granger ADF test N/A due to omission of outliers nonstationarity
Ljung-Box test 52.8414896 (df = 21) 1.4490329× 10−4 no autocorrelation

Shapiro-Wilk test 0.9954866 0.79759 normality

(T = 208)

The Ljung-Box test rejects the null hypothesis of no autocorrelation. The Shapiro-Wilk test fails to reject the
normality hypothesis.
For comparison, the study examines the first-differenced W5K without outliers, ∆lnS∗

t . Figure 12 shows the
time-series plot, the correlogram, the histogram, and the QQ plot of the first-differenced W5K, ∆lnS∗

t . The
time-series plot shows that ∆lnS∗

t seems randomly scattered around zero, and the correlogram agrees. The
correlogram suggests that ∆lnS∗

t is neither an AR(p) process, nor a MA(q) process. Similarly to v̂∗t and ŵ∗
t ,

its histogram and QQ plot suggest that there is no outlier, and all scores lie along the normal-distribution
line. Table 15 is the descriptive statistics and hypothesis tests for ∆lnS∗

t . The Ljung-Box test rejects the null
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図 11 Time-series plot, correlogram, histogram, and QQ plot of ECM residuals ŵ∗
t

表 15 Descriptive statistics and hypothesis tests of first-differenced W5K ∆lnS∗
t

Mean Variance Skewness Kurtosis
0.0256039 0.002994 -0.0585525 2.9139929

Test Test statistic p value H0

ADF test N/A due to omission of outliers nonstationarity
Ljung-Box test 48.231377 (df = 24) 0.0023628 no autocorrelation

Shapiro-Wilk test 0.99497 0.7201196 normality

(T = 216)

hypothesis of no autocorrelation. The Shapiro-Wilk test fails to reject the normality hypothesis.
Without outliers, the ECM residuals, ŵ∗

t , and the first-differenced W5K, ∆lnSt, are likely not only stationary
but also Gaussian. The study further examines whether they are identically distributed. The normal distribution
is a two-parameter distribution; the two parameters are the mean and the variance. The study splits its time-
series data into two periods: the first half and the second half. Firstly, the study employs the F test to compare
the variances, and its null hypothesis is that the two variances are equal. The last row of Table 16 shows the
results. The F tests fail to reject the null hypothesis at the 1% confidence level. Then, the study conducts the
t test for comparing the means, assuming equal variance. Its null hypothesis is that the means are equal. The
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図 12 Time-series plot, correlogram, histogram, and QQ plot of first-differenced W5K ∆lnS∗
t

表 16 Hypothesis tests of comparing means and variances

Data ECM residuals without outliers (ŵ∗
t ) First-differenced W5K (∆lnSt)

Test statistic p value Test statistic p value Ho

t tests for means 0.2448419 0.8068226 0.5663242 0.5717668 equality
F tests for variances 1.4754848 0.0494446 1.0309861 0.8748846 equality

first row of Table 16 shows the results. The t tests fail to reject the null hypothesis. Therefore, ŵ∗
t and ∆lnSt

are likely identically distributed.

2.2.3 Buffett indicator as mean-reverting process
This study defines the empirical Buffett indicator, lnBI [e]t as lnSt − ψ · lnYt, i.e., lnBI [e]t ≡ lnSt − ψ · lnYt,

with ψ ≈ 1. By rewriting the ECM of equation (4), we have the following:

(∆lnSt − ψ ·∆lnYt) = φ+ (ψ · ξ + ζ) · lnYt−1 + ξ · (lnSt−1 − ψ · lnYt−1) + w∗
t + η · qt

∆lnBI
[e]
t = φ+ (ψ · ξ + ζ) · lnYt−1 + ξ · lnBI [e]t−1 + w∗

t + η · qt (5)

= κ ·
(
µ+ ν · lnYt−1 − lnBI

[e]
t−1

)
+ w∗

t + η · qt (6)

where κ ≡ −ξ, µ ≡ −φ/ξ, and ν ≡ −(ψ + ζ/ξ). Their estimates are respectively, (κ̂∗ =) 0.0413525, (µ̂∗ =)
-1.2227102, (ν̂∗ =) 0.5556475. Because the estimated coefficient ξ̂∗ is negative and greater than -1 so that
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0 < 1 + ξ̂∗ (< 1) or 0 < κ̂∗ (< 1), the ECM of equation (4) is a mean-reverting process, or the empirical Buffett
indicator likely shows regression to the mean. Therefore, when the empirical Buffett indicator is greater or less
than the reversion mean, the indicator tends to decrease or increase, accordingly. The half-life of the process is
16.7619082 quarters.
Here, the reversion mean for the empirical Buffett indicator at time t is written as µ + ν · lnYt, which is a

function of GDP. The estimated coefficient ν̂ is positive, so the empirical Buffett indicator tends to increase
along with GDP.

3 Expectations and simulations of empirical Buffett indicator and W5K
This section first calculates the expectations of the empirical Buffett indicator, lnBI [e]t , and the W5K, lnSt,

conditional on GDP, lnYt. Then, the section simulates the empirical Buffett indicator and the W5K with GDP.
The section employs two initial values for calculating the expectations and the simulations. The first one is the
first GDP data in the first quarter of 1947. The second one is the first data of the W5K in the fourth quarter
of 1970. The study calls the former “long,” and the latter “short.” For the time index, the long operations use
Roman numerals, and the short operations use Hindu-Arabic numerals. Quarter 4 of the year 1970 is t = XCVI
for the long operations, and t = 1 for the short operations.
By rewriting equation (5), we can write the expected value of the empirical Buffett indicator conditional on

GDP as follows:

E[lnBI
[e]
t | lnY ’s] = φ+ (ψ · ξ + ζ) · lnYt−1 + (1 + ξ) · E[lnBI

[e]
t−1 | lnY ’s] + η · λ (7)

Then, we can write the conditional expectation of the W5K as follows:

E[lnSt | lnY ’s] = E[lnBI
[e]
t | lnY ’s] + ψ · lnYt (8)

The set of the parameters in equation (7), ω(≡ φ, ψ, ξ and ζ), employs the OLS estimates of the ECM without
outliers, ω̂∗. For the long operations, the initial value for the empirical Buffett indicator is the reversion mean
at time I, i.e., lnBI [e]I = µ̂∗ + ν̂∗ · lnYI. The values of the coefficients µ̂∗ and ν̂∗ are the OLS-ECM estimates
without outliers. For the short operations, the initial value for the empirical Buffett indicator is the observed
empirical Buffett indicator at time 1, i.e., lnBI [e]1 = lnS1 − ψ̂∗ · lnY1. The study calculates the expectations
of the Buffett indicator and the W5K conditional on GDP. The green and turquoise curves show the long and
short expectations in figures 13 and 14.
Figures 13 and 14 respectively show the simulations of the empirical Buffett indicator and the W5K of the

long and the short simulations. The simulation parameters, ω̃, are random draws from the 4-variate normal
distribution whose mean and veriance-covariance are respectively the OLS-ECM estimates without outliers and
their variance-covariance matrix divided by the square root of T , i.e., ω̃ ∼ N[4](ω̂

∗, Σ̂ω̂∗/
√
T ). The division

of the variance reflects the superconsistency of cointegration. The simulated values of the error term w∗
t are

random draws from the normal distribution with mean zero and variance V ar(ŵ∗
t ), i.e., w̃∗

t ∼ N(0, V ar(ŵ∗
t )).

The value of another simulation parameter η equals the mean of the four outliers, i.e., η̂ = -0.24736. The
simulated values of the other error term qt are random draws from the Poisson distribution with parameter λ.
Here, λ̂ = 0.0184332.
Violet points in the upper panels of figures 13 and 14 are the first 1000 plots of the simulated empirical Buffett

indicator. Then, for each quarter, the study calculates the mean (black solid line), the median (yellow dotted
line), and the 95% confidence interval (yellow dotted lines). The corresponding lines almost overlap because
the mean and the median are close. The observed empirical Buffett indicator has been fluctuating around the
mean and the median of the simulated empirical Buffett indicator. Also, most points of the observed empirical
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表 17 Data and descriptive statistics of long simulations

(a) Simulated W5K
Year Quarter Observed W5K (Trillion $) Conditional mean (Trillion $)
2024 4 58.2772161 49.0423784

Remark: Observed GDP (Trillion $) : 29.723864

Percentiles of simulated W5K
(Mean) (SD) Median (Precentile of observed W5K)

(49.188557) (1.2490358) 49.6007127 (77.59 percentile)

0.5 percentile 2.5 percentile 5.0 percentile 95.0 percentile 97.5 percentile 99.5 percentile
26.3863332 31.2685133 33.7885066 70.0139693 74.9664681 85.4036484

(b) Simulated empirical Buffett indicator
Year Quarter Observed empirical Buffett indicator Conditional mean
2024 4 1.9611606 1.4539721

Percentiles of simulated empirical Buffett indicator
(Mean) (SD) Median (Precentile of observed empirical Buffett indicator)

(1.4549574) (1.430242) 1.4599014 (79.87 percentile)

0.5 percentile 2.5 percentile 5.0 percentile 95.0 percentile 97.5 percentile 99.5 percentile
0.5653607 0.7133131 0.8018119 2.6071125 2.9324362 3.5879749

(Number of simulations = 2× 104, execution time = 51.4613136927287 secs)

Buffett indicator remain within the 95% confidence interval. The starting point of the observed empirical
Buffett indicator in 1970 was high relative to the reversion mean. Still, the mean and the median of the
simulated empirical Buffett indicator reached the reversion mean after about fifteen years.
Pink points in the lower panels of figures 13 and 14 are the simulated W5K. Similarly to the simulated

empirical Buffett indicator, for each quarter, the study calculates the mean (black solid line), the median
(magenta dotted line), and the 95% confidence interval (magenta dotted lines). The corresponding lines almost
overlap because the mean and the median are close. The observed W5K has been fluctuating around the mean
and the median of the simulated W5K. Most points of the W5K remain within the 95% confidence interval.
The starting point of the observed W5K in 1970 was high relative to the reversion mean, but the mean and the
median of the simulated W5K reached the reversion mean after about fifteen years.
Figure 15 shows the histograms of the simulated empirical Buffett indicator and the W5K in quarter 1 of

2025. The upper panels are the long simulations, and the lower panels are the short simulations. Tables 17 and
18 demonstrate the descriptive statistics at the end of the long and short simulations.
By rewriting equation (5), we have the expected future value of the empirical Buffett indicator, conditional

on the current value.

E[lnBI
[e]
T+1 | lnYT , lnBI

[e]
T ] = φ+ (ψ · ξ + ζ) · lnYT + (1 + ξ) · lnBI [e]T + η · λ (9)

This is the ”now”cast of the empirical Buffett indicator. At the end of each quarter, the W5K data is
immediately available, while it takes some time for the GDP data to be published. Therefore, the current value
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図 13 Long simulations of empirical Buffett indicator and W5K

of the empirical Buffett indicator is also unavailable. However, with the coefficient estimates, ω̂∗, η̂ and λ̂,
equation (9) provides the conditional expectation or the nowcast of the empirical Buffett indicator. For quarter
1 of the year 2025, the nowcast of the empirical Buffett indicator is 1.728112. Then, the nowcast of GDP is
29.7180222 trillion $. The observed values of the empirical Buffett indicator and GDP in quarter 4 of 2024 are
1.7277597 and 29.723864 trillion $.

4 Conclusions
This study investigates the dynamics of the Buffett indicator, which is the ratio of the stock price index, the

Wilshire 5000 index, and GDP. The study confirms that the Wilshire 5000 and GDP are both nonstationary
as they are known, but that they are cointegrated. The Buffett indicator is a mean-reverting Gaussian process
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図 14 Short simulations of empirical Buffett indicator and W5K

(a) Long simulations

(b) Short simulations

図 15 Histograms of simulations
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表 18 Data and descriptive statistics of short simulations

(a) Simulated W5K
Year Quarter Observed W5K (Trillion $) Conditional mean (Trillion $)
2024 4 58.2772161 49.0489442

Remark: Observed GDP (Trillion $) : 29.723864

Percentiles of simulated W5K
(Mean) (SD) Median (Precentile of observed W5K)

(48.4520586) (1.2486384) 48.8354362 (80.06 percentile)

0.5 percentile 2.5 percentile 5.0 percentile 95.0 percentile 97.5 percentile 99.5 percentile
25.6440861 30.6398634 33.1603424 68.8463835 73.6462668 83.403095

(b) Simulated empirical Buffett indicator
Year Quarter Observed empirical Buffett indicator Conditional mean
2024 4 1.9611606 1.4541668

Percentiles of simulated empirical Buffett indicator
(Mean) (SD) Median (Precentile of observed empirical Buffett indicator)

(1.4583864) (1.4318387) 1.4565679 (79.48 percentile)

0.5 percentile 2.5 percentile 5.0 percentile 95.0 percentile 97.5 percentile 99.5 percentile
0.5634677 0.7275781 0.8107452 2.6352283 2.9537563 3.7040691

(Number of simulations = 2× 104, execution time = 25.5748508771261 secs)

with a Poisson jump process. The reversion mean of the Buffett indicator is increasing along with GDP, as is
often pointed out. However, the increasing rate of the Wilshire 5000 equals the DGP growth rate, as the Buffett
indicator implies. The study detects four outliers in the Wilshire 5000, which coincided with four adverse shocks
to the US economy. The error correction model of the Buffett indicator is variance stationary as opposed to the
efficient-market hypothesis.

5 Future research issues
There are several research issues. One is the variance of the OLS-ECM estimates. This study assumes

the estimates are super consistent. However, the OLS-ECM estimates could be consistent rather than super
consistent. Another one is a more extended dataset of the stock price index. A candidate could be OECD data.
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